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On the X-ray Diffraction Patterns of Polymer Fi lms 
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Equations are derived which relate the angular spread of arcs in X-ray diagrams of oriented 
polymer films to the dispersion of the crystallites. A simple graphical method of measuring the 
dispersion is indicated, and the use of the equations in indexing reflexions and in checking the 
self-consistency of the interpretation of the X-ray diagram is pointed out. 

1. Introduction 

Polymer films usually show some degree of uniplanar 
orientation, i.e. the molecules tend to lie with their 
fibre axes in the planes of the films. In  some cases 
stretched films have high uniplanar orientation, and 
also considerable orientation about the direction of 
stretching; such a film, when examined by X-rays 
with the beam parallel to the plane of the film, fre- 
quently gives a diffraction photograph in which the 
apparent  orientation is better than  can be readily 
obtained with fibre specimens of the same polymer. 
I t  is clear, however, tha t  these X-ray photographs 
differ in several respects from rotation or fibre photo- 
graphs, and a geometrical investigation is necessary 
before they  can be fully interpreted. Such an in- 
vestigation is a t tempted here. The angular position 
of a reflexion with reference to the equator of the 
diagram is first calculated for a single crystallite in 
terms of parameters which define the orientation of 
the crystallite and the polymer film. The reflexions 
in an X-ray photograph of a film or fibre are in general 
not spots, but  are drawn out into arcs as a result of 
the imperfect orientation of the crystallites. We 
derive equations connecting the angular spread of 
these arcs with the dispersion of orientation. 

The equations obtained may  be used to calculate 
the dispersion of the crystallites from measurements 
of the lengths of equatorial arcs, and also to deduce 

and ~ values from the reflexions. Comparison of the 
measured lengths of the various arcs with the values 
calculated from the dispersion gives a useful check on 
the self-consistency of the interpretation of the X-ray 
diagram, and may  enable a decision to be made as to 
whether all the reflexions originate from the same 
crystalline phase. 

Throughout this paper we shall assume tha t  a flat 
photographic plate, perpendicular to the primary beam 
is used. The results could easily be extended to cyhn- 
drical or conical films. 

2. Specification of orientation 

Consider a plane through the 'fibre axis' of any 
crystallite, perpendicular to the polymer film. The 
angle ~ between this plane and the direction of orienta- 
tion (i.e. of rolling or stretching) is defined as the 
'in plane' disorientation of the particular crystalhte. 
The 'out of plane' disorientation, ~v, is the angle 
between the plane of the film, and a plane through the 
fibre axis which intersects the film in a straight line 
perpendicular to the direction of orientation. In this 
way ~, ~2 are defined symmetrically, and equations 
derived for the diagram obtained with the beam passing 
through the edge of the film may be transformed into 
relations which hold for the beam normal to the film by 
interchanging ~ and ~ (with an appropriate change of 
sign). To define the signs of q and VJ we consider the 
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film edge-on to the beam, with the direction of orienta- 
tion vertical. We count ~ and y~ positive if the upper 
half of a crystallite is nearer the X-ray plate, and if 
it is to the right of the film looking along the primary 
beam. 

For some purposes it is convenient to consider the 
X-ray diagrams of films which have been rotated about 
a vertical axis. The angle between the primary beam 
and the plane of the film will be called/z, which will 
be positive if the rotation appears clockwise from 
above. We shall also have occasion to consider re- 
flexions from films which are tilted about a horizontal 
axis perpendicular to the primary beam. The angle of 
tilt will be called v, and will be subject to the same sign 
convention as ~0. 

The position of a spot in the X-ray diagram is 
specified (for given 0) by the angle 2; which the line 
joining it  to the primary spot makes with the right- 
hand side of the equator. In the following pages 2; will 
be calculated as a function of ~, y) for different po- 
sitions of the film. Unless otherwise stated, the direc- 
tion of orientation will be assumed vertical. 

3. Equatorial reflexions 

(a) Fi lm edge-on to X-ray beam (# = 0, v = 0), and 
~ = 0 .  

Fig. 1 shows the sphere of reflexion in reciprocal 
space, centre M, radius unity. The primary beam 

Fig .  1. S p h e r e  of  r e f l ex ion ,  /~ ----- v ----- 0;  e q u a t o r i a l  r e f l ex ions .  

enters the sphere at B and emerges at O, the origin 
of the reciprocal lattice. OF is the axis of rotation of 

the reciprocal lattice of a crystallite corresponding to 
rotation about its fibre axis, and the plane PP'O, 
normal to OF, is the zero layer of the lattice. We 
consider one lattice point P, which lies in the plane 
PP'O and would therefore give an equatorial reflexion 
in a perfectly oriented specimen. If P is in a reflecting 
position it must lie on the sphere of reflexion, with 
O P = 2 / d = 2 s i n O .  The locus of P is therefore a 
circle PP1P'P~, centre C, formed by intersection of 
the sphere with the plane through P normal to MO. 
P, P '  are two reflecting positions of a lattice point of 

a crystallite with an in-plane disorientation ~; CN is 
normal to PP' ,  and obviously hrOC = ~0. 

Since P.BO = 0 and BPO = ½re, B P  = 2 c o s 0 ,  
BC=2 cos ~ 0 and OU=2 sin s 0; also CP=2 sin 0 cos 0. 
Now UN = OU tan ~ = UP sin Z, hence 2 sin ~ 0 tan 
= 2 sin 0 cos 0 sin 2;, or 

sin 2; = tan 0 tan ~ .  (1) 

This is the required relation between 2; and 0, ~. 

(b) General case for f i lm edge-on to beam (# = O, v = O) 
The problem is to calculate 2;, or in other words the 

positions of P, P'(P1, P1), when the crystallite is given 
an out-of-plane disorientation ~. I t  is convenient to 
take a set of rectangular Cartesian axes with the 
incident beam as the negative direction of OX, and 
with OZ in the direction of stretching. The plane 
through BO containing OF will make an angle y) with 
OZ, consequently the plane through O normal to OF 
cuts the plane O Y Z  in a line which will make an 
angle y~ with 0 Y. The points P1, P~ lie in this plane. 
The equation of the plane PP'O is obviously z = x tan  ~0, 
and that  of plane P~P~O is therefore 

z = x tan ~ - y  tan yJ. (2) 

l~ow the coordinates of Px are OC, CP cos 2;, CP sin 2; 
o r  

2 sin 2 0, 2 sin 0 cos 0 cos 2;, 

Substitution of these into (2) 

sin 2; + cos Z tan ~ = 

from which we obtain 

2 sin 0 cos 0 sin 2;. (3) 

gives 

tan 0 tan q ,  (4) 

Z = sin-1 (tan 0 tan ~ cos y~)-v 2 . (5) 

The two values of Z found from (5) refer to the re- 
flexions on the right and left of the diagram. 

(c) General case when the f i lm has been rotated about a 
vertical axis 

This case is of possible practical importance be- 
cause, as will be shown later, rotation of the specimen 
about a vertical axis can shorten the equatorial re- 
flexions of specimens with imperfect orientation. I t  is 
most simply considered by allowing the sphere of re- 
flexion to rotate through - #  about 0~. We require to 
calculate the points of intersection Ps, P~ of the circle, 
centre U, in the new position with the plane (2). The 
coordinates of U will be 2 sin 9 0 cos/z, 2 sin 9 0 sin/x, 0, 
hence those of Ps will be given by 

x = 2 sin s 0 cos/~-2 sin 0 cos 0 sin tz cos Z, ] 
y = 2 sin s 0 s in/z+2 sin 0 cos 0 cos # cos Z,  I (6) 
z = 2 sin 0 cos 0 sin Z. 

Substitution of these into (2) ~elds the equation 

sin 2;+u cos 2; = v tan O, (7) 
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where 
u = tan ~ s i n / ~ + t a n  7~ cos/~, } (8) 
v = tan ~0 cos # - t a n  7~ s in /~ .  

The solution of (7) is 

v tan  O±u(1 +u"-v"  tan" 0) ½ 
sin 24 = 1 +u" , (9) 

which gives Z as a function of q, 7~,/~, 0. We may  
note tha t  ff # = 0, then u = tan  7~ and v = tan  q, 
and equation (9) reduces to (5). I t  is obvious tha t  (7) 
and (9) have real solutions if, and only if, 

1 +u". ~ v ~ tan". 0 .  (10) 

If this does not hold there will be no reflexion from 
the set of planes under consideration in this particular 
orientation. 

4. Discussion and application of results for 
equatorial reflexions 

The previous results may  be useful in practice for at  
least two distinct purposes: they  may be used to find 
the most advantageous position of the  specimen for 
resolving near equatorial reflexions--this entails cal- 
culating the values of # for which the spread of the 
arcs is a min imum--and  they  permit  calculation of the 
dispersion of the orientation of the crysta.llites in the 
film. 

(a) The most advantageous position of the specimen 
We consider two cases: ~ and ~ may  take all values 

between ±T0 and ±~0 respectively, or the fibre axis 
may  take up all positions within an elliptical cone with 
greatest in-plane and out-of-plane disorientations ~0 
and ~0 respectively. We begin by considering the first 
case. 

Equat ing to zero (~24/~)v,0,~, obtained by partial  
differentiation of (7), gives 

cos 24 = tan  0 cot /~,  (1 1) 

from which, by substitution into (7), we obtain 

cos ~ sin # = sin 0 .  (12) 

Hence for given #, 0 and y~, 24 is a monotonic function 
of ~, since in general y~,/~, 0 will not  satisfy (12); 
if they  do satisfy (12) in any special case, 24 is inde- 
pendent of ~. As a consequence of (12) there exists 
for given ~, 0 a value of # at  which the reflexions 
arising from all values of ~ coincide. For  ~ = 0 this 
value is # = 0, and the arc corresponding to this value 
of 0 contracts to a spot on the equator. Similar con- 
siderations apply to 24 as a function of y~ for given 
/~, 0, ~; g becomes independent of ~ at a value of 
/~ given by 

cos ~ cos # = sin 0 ,  (13) 

and is determined from 

- c o s  Z = tan 0 t a n / ~ .  (14) 

Equat ion (14) shows tha t  /~ is negative in this case 
for the right-hand reflexion. A comparison of (11) and 
(14) reveals tha t  these equations cannot be satisfied 
simultaneously, since 0 =~ 0; it  follows tha t  there is 
no value of # at  which both ~24/~ = 0 and ~24/~v/= 0 
are satisfied simultaneously. These considerations 
show tha t  the length of the arc in the X-ray  diagram 
is determined by two of the positions ±~o, ±~o. For  
values of # between those given by  (12) and (13) 
(with ~, ~ replaced by ~0, ~o) the extremities of the 
arc correspond to ~0, -Y% and -~0 ,  YJo, and outside 
this range of /~ to ~0, ~o, and - ~ 0 , - 7 %  The semi- 
angle subtended by the arc may  therefore be cal- 
culated from (7), (8) or (9) with values of ~0, ~0 of 
the appropriate sign inserted. These points are 
illustrated by Fig. 2, in which 24 is plotted as a function 

Y. 13 
( 1 5 . 5 } ~  115 __~ .{ -15 ,  -5} 

" / /  \ ' ~ .  "'k." ~ -/(-15.o) 

X / 
o ':o°.:, 

¢ - 1 5 , - s ) ~  I~ ~(15.5) 

Fig.  2. Va r i a t i on  of Z wi~h ~u for 0 = 30 ° and  va lues  of 
(¢, ~p) ind ica ted .  B r o k e n  l ine:  Xell.. 

of /~ for 0 -- 30 ° , a n d s = 0  ° o r ± 1 5  ° , v  2 = 0  ° o r ± 5  ° . 
We see for example tha t  if 7~o = 5 ° the equatorial 
reflexion has a minimum spread (2 X = 11040 ') for 
# = 30 ° 8'. 

In  the case of the elliptical distribution of the 
directions of the fibre axes, the extreme positions can 
be writ ten as follows: 

t an  ~ = tan ~o cos r/ ,  } (15) 
tan  ~) = tan  YJo sin ~ .  

We require to determine the value of ~ which makes % 
a maximum. We consider in detail/~ = O. Substi tuting 
the values of tan  ~ and tan  yJ from (15) into (4), and 
equating to zero (~24/~r])~o,~o, 0 obtained by partial  
differentiation of the resulting equation, we obtain 

tan YJo cos 24 (16) 
t a n ~  = - t a n ~ o t a n O  " 

Using this value of 7, we get from (4) 

sin e 24en. = tan  2 O tan". ~0 cos". ~0+sin". v/0 (17) 

in which 24ell. iS the required semi-angle subtended by 
the arc. If # # O, a similar argument leads to the 
equation 

sin ~ 24eu. = tan  ~ ~o (cos/~ tan  O-sin/~ cos 24en.)". 

+ t a n  ~ 730 (sin # tan 0+cos/~ cos 24en.) ~ . (18) 
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Fig. 3. Angular spread of equatorial reflexions for values of (~o, F0) indicated. Rectangular distribution, g = 0. 
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Fig. 4. Angular spread of equatorial reflexions for values of (~Po, ~Po) indicated. Elliptical distribution, gt = 0. 

The extreme values of Zen. as # is varied are ob. 
rained by  equat ing to zero (~Ztn./@)~°,~o,0, derived 
from (18). The resulting equat ion has two solutions, 
which are those of equations (12) and (13) with ~, 
replaced by  qo, ~v0, and the corresponding values of 
Ztn. are given by  (11) and (14). The min imum value 
of Zen. is given by  (11) if q 0 > ~ o  and by  (14) if 
qo < ~vo. l~or qo = ~Vo, ffen. is obviously independent  
of #. 

Values of Zeu. for qo = 15°, ~o = 5° are also plot ted  
against  /x in Fig. 2 (broken line). 

(b) Calculation Of dispersion of crystallites 
In  principle it  is possible to calculate ~o, ~vo from 

the  values Z', Z'" for two equatorial  reflexions, 0', 0". 
F o r / z  = O, we have from (4) (remembering t h a t  for 
the ' rectangular '  dis tr ibut ion the extremes of the arc 
correspond to ~o, -~o)  

sin (z'-z") 
= 

t an  ~o t an  0' cos Z " - t a n  0" cos Z' ' 

t an  0' sin Z " - t a n  0" sin Z' (19) 
t an  ~o = t an  0' cos Z " - t a n  0" cos g '  " 

3: 
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(30.15) / 
30 ° 

~ "  /(30.10) .,... / 
", 

\ ~ ~ - - ~ ' J ~  ~(10.10) 
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/ (0.10) 

/f~ I _ ) ~  --------r---- (0.s) 

0"0 0 5  1 "0 1 5 2"0 tan 2 0 
0 5 10 15 20 25 30 0 (o) 

Fig. 5. Angular spread of equatorial reflexions for values of (~0, ~0) indicated. Rectangular distribution, /~ ---- ½re 
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( ' 3 0 . 1 5 ) / /  
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,, ~ . ~ -  l (0.10) 

~ - _ __._____-- - (0 .5)  

0"0 05 1'0 1 5 2"0 tan20 
0 5 10 1.5 20 2.5 30 0 (o) 

Fig. 6. Angular spread of equatorial reflexions for values of (¢Po, ~o) indicated. Elliptical distribution, /~ = ½~. 

For  t he  e l l ip t ical  d i s t r i bu t i on  t he  cor responding  
equa t ions  are  

cos 2 ~ " _  cos 2 ~'  

tan~' q% = t a n  9 0' cos 9 Z " - t a n 2  0" cos 9" Z' ' 
(20) 

t a n  9 0' sin 9 Z " - t a n 2  0"  sin 9' Z' 
tan9 ~o = t a n  20'  cos ~ Z " - t a n 2  0"  cos ~ g '  " 

I n  well  o r i en ted  f i lms ~0 0 m a y  be qui te  small .  I n  
such cases i t  will  be a d v a n t a g e o u s  to  de t e rmine  ~0 b y  

obse rva t ions  w i th  t h e  b e a m  n o r m a l  to  t he  fi lm, i.e. 
w i th  F = ½~. I f  ~o is suf f ic ien t ly  smal l  i t  follows f rom 
(9) or (18) t h a t  Z = %,  f rom which ~o is f ound  im- 
media te ly .  R e t u r n i n g  now to  the  edge-on posi t ion,  we 
see f rom e q u a t i o n  (5) t h a t  for  smal l  YJ0 a n d  t he  rect-  
angu la r  d i s t r i bu t i on  

~Oo = z - s i n - Z  ( tan  0 t a n  ~o) • (21) 

Fo r  t he  e l l ipt ical  d i s t r i bu t i on  we have,  w i th  t he  same 
a p p r o x i m a t i o n ,  f r om (17) 
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s in°  Y)0 ---- sin2 ZeU. - t a n ~ "  0 t a n  ~ ~0 o . (22)  

Even for values of ~o as large as 15 °, the error in Z 
introduced by the use of the approximate equations 
(21), (22) is less than  1 ° for values of ~0, 0 up to 30 °. 

Values of ~0, W0 may  also be found from the 
equations relating these quantities with Z, 0, # by 
graphical methods. Figs. 3 and 4 show the spread of 
equatorial reflexions as functions of 0 for a number 
of ~o, ~P0 combinations, and # = 0. A circle described 
with the origin as centre, and of radius tan  20 cuts 
the relevant curve at a point which shows the limit 
of the arc. In  other words the line joining this point 
to the origin makes an angle Z with the horizontal. 
These graphs if reproduced on transparent  paper on a 
suitable scale can be superimposed on an X-ray 
diagram, and the values of ~0, Y~0 which give the be~t 
fit ~4th, the equatorial reflexions read off directly. 
Since certain combinations of ~0, Y~0 may be difficult 
to distinguish, it is advantageous to use also a second 
X-ray diagram taken with # = ½~. The corresponding 
graphs for this case are given in Figs. 5, 6. A glance 
at these diagrams shows tha t  combinations of ~0, ~P0 
which are not resolved with p, -- 0, are easily distin- 
guished when # - ½~ and vice versa. 

5. (hkl) ref lexions 

In general the line joining the reciprocal-lattice point 
P to the origin will not be perpendicular to the fibre 
axis, but  will make an angle A with the latter. This 
angle may be calculated from the general expression 

c 2 I h ~ ] l- ~ cos2A ,,~ ~ sin ~ ~x-2.~, hk (cos y - c o s  c~ cos fl) 
ab 

= 1 - ~  cos ~ c~+2 cos ~ cos fl cos 7 ,  (23) 

in which c~, fl, y, are the angles of the unit cell, and 
the fibre axis is assumed to be the c axis. Fig. 7 shows 

Z F 

N' 

Fig. 7. Sphere  of reflexion, p = v = 0; (hkl) reflexions. 

the case for which ~2--0 and # - - 0 ;  /)3, P3 are re- 
flecting positions of P,  and P3 N', .N.N', PiN'  are 
perpendiculars from /)3, N, P~ respectively to the 
'fibre axis' OF. For all positions of P,  ON' (-- ~) = 

2 sin {9 cos A. Thus the plane P3P~N ' is always parallel 
to the plane PP'O of Fig. 1; ff y~ # 0 the correspond- 
ing plane will be parallel to P1P~O (Fig. 1) whatever 
the values of ~, ~ may  be. The distance between the 
two planes is always 2 sin 0 cos A. The plane PP'O 
is given by equation (2), hence the parallel plane 
through N'  is 

z - x  tan  ~ + y tan  y~ = 2 sin 0 cos A (24) 
(1 + t a n  9 qp+tan 2 ~)½ 

In the general case, in which the sphere is rotated 
about OZ through -/~, the coordinates of /)4 (the 
reflecting position of P)  will be given by (6). Sub- 
stitution of these into (24) again gives equation (7), 
but  with 

u = tan ~0 sin/~ + t a n  V cos/z,  
v = tan  ~ cos/z-- tan V sin [z 

COS m 
+ ~ (l+tan 2 ~+tan 2 ~)½. (25)  

Thus Z is again given by equation (9), with the above 
definitions of u, v. We may note tha t  u has the same 
value as in (8) but  v contains an additional term, 
which of course vanishes when A = ½~, in which 
case the equations reduce to those of § 3. 

By an argument similar to tha t  leading to equations 
(11), (12) we may show tha t  Z is not necessarily a 
monotonic function of ~ and V. Thus the extremities 
of the arc need not correspond to the extreme positions 
of the fibre axis; the general equations for the 
extent of the arc are unmanageably complicated. 

However we can show tha t  for small YJ0 and # = 0, 
useful expressions for the limits of the arc can still 
be obtained, and we shall only consider this case. 

In  the first place if ~0 = 0 

sin Z = tan  0 tan  ~o+cos A/(cos 0 cos ~) ,  (26) 

and Z determined from this equation has a minimum 
for a value of ~ given by 

sin ~ = - s i n  0/cos A . (27) 

Two cases arise, therefore, according to whether ~0 o 
is greater or less than [ql determined from (27). If 
~0 is less than this value, then Z is a monotonic func- 
tion of ~0, and the arc extends between Z values 
corresponding to i~00. In the other case the upper 

extremity of the arc (assuming that the latter does 
not extend to the meridian) still corresponds to +~0, 
but the lower extremity is determined by  the crystal- 
lite for which ~ is given by (27). The corresponding 
value of Z is cos -1 (sin A/cos 0). 

For small ~, when cos ~ may  be taken as unity, 
we have from (7) and (25) 

sin (g+~)  = tan 0 tan q+cos  A/(cos 0 cos ~) .  (28) 

I t  can be shown tha t  the crystallite giving the mini- 
mum value of Z has a ~0 value still determined by (27) 
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with an error of the order of to2. The same two cases 
will therefore arise as for too = 0, and it  follows from 
(28) tha t  the effect of a finite too is to lengthen the 
arc by  too at  each end. 

If  the indexing of a reflexion is uncer ta in  the  above 
equations m a y  be used to calculate its ~ value. Since 

= 2 sin 0 cos A , (29) 

2; m a y  readi ly  be expressed in terms of $ from the 
appropr ia te  equations given above. Thus $ m a y  be 
evaluated  from measurements  of the  positions of the 
extremit ies  of the  arcs. In  practice it  is of course 
desirable tha t  these should be well defined, and the  
l imi ta t ion  on the value of iv0 ment ioned above must  
be remembered.  

We now consider the case in which a reflexion ex- 
tends to the meridian.  The general condition for this  
to occur is, from (7), 

v t a n 0  = 1 .  (30) 

For  # = 0 and too = 0, this  reduces to 

= A - 0 ;  (31) 

if A > 0 the value of ~ obtained from this equat ion 
gives the m i n i m u m  value of ~0 which will allow the 
arc to touch the meridian.  For  small  ~'0 the corres- 
ponding value of ~0 differs from tha t  given in (31) 
only by  quant i t ies  of order to~. In  the general  case 
for the rectangular  dis t r ibut ion (and # = 0) i t  follows 
from (25) and (30) tha t  ( h k l )  reflexions will touch 
at the  mer id ian  or overlap if 

cos A ( l + c o s  ~ ~o tang too) ½ >~ cos (0+~0) • (32) 

F rom (10) the  condition tha t  there should be a 
reflexion from the  planes under  consideration is 

cos zJ( 1 +cos 2 ~o tan9 too) ½ 

~< cos 0 cos ~o cos to0+sin 0 sin too • (33) 

If too = 0, this  equat ion gives, for the least value of 
/t which will give a reflexion for a given ~o, 

A = 0 - ~ o .  (34) 

This is ident ical  with (31) wi th  ~ = - ~ 0 ;  hence the  
reflexion corresponding to the m i n i m u m  value of A will 
be a meridional  spot. I t  is easily shown tha t  this  is 
also true for too # 0. 

For  the elhpt ical  case the equations corresponding 
to (32) and (33) are ident ical  with the  la t ter  with 
too = 0, so long as qo > too. 

6. M e r i d i o n a l  (OOi) ref lexions and polar a r c s  

I t  is easily shown from the equations of the preceding 
section tha t  for planes with A = 0 

t an  Z = 1 / u  . (35) 

Thus when /t = 0 we have the physical ly  obvious 
simple relat ion 

Z = ½~r-to. (36) 

For  positions of the  fibre axis between +~0, ±too the 
spread of the  meridional  reflexion is 2to 0; from equat ion 
(5) we see tha t  the spread of the equatorial  reflexion 
is 2[to0+sin -1 (tan 0 t an  ~0 cos too)], and  is therefore 
greater t han  tha t  of the meridional  arc, except for 
the t r ivial  cases Fo = 0, 0 = 0, too = l~r. If  too has  been 
determined by  one of the methods described earlier, 
measurement  of the spread of a 'meridional '  reflexion 
obviously provides an effective check tha t  the lat ter  
is a genuine meridional  reflexion. 

If  a polar arc has a greater spread t han  would be 
expected from the spread of the  equatorial  reflexions, 
i t  m a y  not  be a true single (00/) reflexion. In  this  case 
resolution into two or more spots m a y  be possible by 
t i l t ing the f i lm through an angle v about  a horizontal  
axis perpendicular  to the  p r imary  beam. By  methods  
similar  to those employed in § 5 it  m a y  be shown tha t  
the result ing value of Z corresponding to given ~v, to, 
v is still  given by  equat ion (7), if, for /~ = 0, u, v are 
defined by  (37): 

u = t an  to cos q/cos (~ + v) ,  

cos A cos ~ / (37) 
v = t an  (~ + v) + sin---0 cos (~ + ~.) 

× (1 + t a n  2 ~ + t a n  9 to)½. 

The corresponding equations for ft = ½~ are obtained 
by  writ ing ~ for to, and - to  for ~ in (37). 

We now invest igate the conditions which must  
hold if a polar  arc is to be resolvable by  t i l t ing the 
specimen in this  way. The condition tha t  two arcs 
touch at  the mer id ian  is given by  (30), which after 
subst i tut ion of v from (37) becomes (for the rect- 
angular  distr ibution):  

c°s2 A ( I +  c°s2 ~0 tang too) = c°s2 (0+(po÷V) • (38) 

The arcs will overlap if the lef t -hand side of (38) is 
greater t han  the right. Resolution will be possible if 
a value of v exists such tha t  

cos 2 A(1 +cos ~ ~ t an  2 to) < cos 2 ( 0 + ~ + v )  (39) 

for all values of ~ between ±~o, and of to between 
±too- Consideration of this  equat ion shows tha t  i t  is 
most easily satisfied at v = - 0 ,  i.e. if the  polymer  
fi lm is t i l ted  at  the Bragg angle, in which case (39) 
reduces to 

t an  ~ A > t an  ~ ~ 0 + t a n  2 too • (40) 

A polar  arc which is not  resolved at this  value of v 
cannot  be resolved at all. 

The corresponding condition for the ell iptical case 
m a y  be derived from (38) and (40) by  put t ing  too = 0 
in these equations, provided ~0 > too, i.e. a polar arc 
can be resolved if A > ~0. 

The preceding equations m a y  be used to calculate 



424 ON T H E  X : R A Y  D I F F R A C T I O N  P A T T E R N S  O F  P O L Y M E R  F I L M S  

the  la rges t  arc which  is n o t  resolvable .  An  e q u a t i o n  
s imi lar  to  (40), b u t  h a v i n g  a n  e q u a l i t y  sign, appl ies  to  
this arc. Two dist inct  cases arise as in § 5, charac- 
terised by  the  same conditions, and we assume as 
before t h a t  ~o is small. In  the  first, subst i tu t ion of A 
from the  above equal i ty  into equat ion (25) with 
# = 0 (which is the  same as (37) with v = 0) gives 
values of u and v, from which, by  equat ion (7), we 
obtain for the  lower ex t remi ty  

sin (Z+~vo) = cos ~0 t an  q0 t a n  0+cos  ~0/cos 0 .  (41) 

The cor responding  e q u a t i o n  for t he  second case is 

1 
cos (Z+~v0) c ~  i1  Y~0 ~½ 

( t a n  ~. y~o+tan ~ 
=  ;OJ " ( 4 2 )  

A n  arc which  is longer  t h a n  would  be expec ted  f rom 
(41) or (42) therefore  c a n n o t  be a single ref lexion.  

F ina l ly ,  i t  is p e r h a p s  w o r t h  po in t i ng  ou t  t h a t  t h e  
equa t ions  r e l e v a n t  to  spec imens  w i t h  f ibre  o r i e n t a t i o n  
m a y  be deduced  f rom the  equa t ions  g iven  in  th i s  p a p e r  
for  t he  e l l ipt ical  d i s t r ibu t ion ,  w i t h  q0 = ~P0. 
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I n  an  early X- r ay  invest igat ion of guanidinium iodide 
b y  Theilacker (1935) an improbably  small value, 1.18/~, 
was reported for the C-N distance in the guanid in ium ion. 
R a m a n  spectra indicate a dis tance of 1.33 /~ (Kellner, 
1941). 

In  order to obtain other X - r a y  evidence on the s t ructure  
of the guanidin ium ion we a t t empted  to find a guanidin ium 
salt  which would allow a simple X- r ay  determinat ion of 
its s t ructure  b y  heavy-a tom techniques and  Fourier  
syntheses of projections. F rom among several salts the  
bromate  was selected for fur ther  invest igat ion because 
of its f lat  uni t  cell. 

Guanidinium bromate,  C(NHz)aBrO a, seems to be 
monoelinie wi th  

a = 3 .77 ,  b = 33 .46 ,  c = 9 .11  A ;  fl = 99 ° . 

The dens i ty  is 2.16 g.cm, -s, requir ing 8 molecules per 
uni t  cell. I t  forms twins wi th  common a and  b axes, bu t  
different c axes. Since reflexions hkl were observed only 
for h + k  ---- 2n, i t  was assumed ~hat the C face (001) is 
centred. A Pa t te r son  synthesis  of the [100] project ion 
excluded the presence of m or 2, leaving Cc as the only 
possible monoelinic space,group. The presence of the weak 
reflexi0ns 001 and 005, however, is in contradiction with 
this  space group. This means t h a t  the  crystals  are not  
ac tual ly  monoclinie bu t  triclinie. This again is in contra- 
diction wi th  the equal i ty  F~kl = ~- Fhkz, which was ob- 
served wi thout  a n y  exception on the  zero-, first- and  
second-layer-line Weissenberg photographs  about  the 
a axis. The discrepancy can be explained ei ther  b y  
assnmlng t h a t  the  deviat ion from monoclinic s y m m e t r y  
is too small  to cause an appreciable difference between 
F ~  and  F~?z or by  a second twinning,  such t h a t  each 

reflexion hkl of one of the twins coincides wi th  hkl of the 
other.  

January 1953) 

Tenta t ive ly  rejecting the second possibili ty,  the  posi t ion 
of the bromine atoms could be easily found from the  [100] 
Pa t te rson  project ion and a generalized Pa t te r son  projec- 
t ion  (Cochran & Dyer ,  1952) based on the  lk l  reflexions. 
The configuration of these a toms was in agreement  wi th  
the space group Cc; in addi t ion to this  it  showed centres 
of s y m m e t r y  in the [100] projection. B y  appl ica t ion  of 
the vector convergence method  (Beevers & Rober tson,  
1950), a t r iangular  guanidinium ion and  the three oxygen 
atoms of the BrOa-ion appeared in the [100] projection.  
As a first approximat ion  i t  was then assumed t h a t  the  
whole s t ructure belongs to the space group Cc and t h a t  i ts  
[100] projection is centrosymmetrical .  A Fourier  refine- 
ment  of the atomic coordinates led to a rel iabi l i ty  factor  
Z] 1Fol --IFc][ -~ ZIFol of 0.16 for the 0kl s t ructure factors. 
Assuming a flat  t r igonal  guanid in ium ion, a C-N dis tance 
of 1.34 /~ could be deduced wi th  reasonable ce r ta in ty  
from the final Fourier  synthesis  (estimated probable  
error 0.04/~). 

At tempts  to account  for the observed reflexions 001 
and  005, such t h a t  for no hkl the deviat ion from the  
equal i ty  / ~  = F ~  Z would exceed the experimental  
errors, were not  successful. I t  was concluded t h a t  a small 

deviation from m0n0clinic symmetry  exists, which is 
masked b y  an approximate ly  50-50% twinning.  Since 
we were not  successful in obtaining single crystals,  a 
fur ther  ref inement  of the atomic coordinates had  to be 
abandoned.  
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