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On the X-ray Diffraction Patterns of Polymer Films

By C. H. Bamrorp AND H. Tompa
Courtaulds Ltd, Research Laboratory, Maidenhead, Berkshire, England

(Received 23 August 1952)

Equations are derived which relate the angular spread of arcs in X-ray diagrams of oriented
polymer films to the dispersion of the crystallites. A simple graphical method of measuring the
dispersion is indicated, and the use of the equations in indexing reflexions and in checking the
self-consistency of the interpretation of the X-ray diagram is pointed out.

1. Introduction

Polymer films usually show some degree of uniplanar
orientation, i.e. the molecules tend to lie with their
fibre axes in the planes of the films. In some cases
stretched films have high uniplanar orientation, and
also considerable orientation about the direction of
stretching; such a film, when examined by X-rays
with the beam parallel to the plane of the film, fre-
quently gives a diffraction photograph in which the
apparent orientation is better than can be readily
obtained with fibre specimens of the same polymer.
It is clear, however, that these X-ray photographs
differ in several respects from rotation or fibre photo-
graphs, and a geometrical investigation is necessary
before they can be fully interpreted. Such an in-
vestigation is attempted here. The angular position
of a reflexion with reference to the equator of the
diagram is first calculated for a single crystallite in
terms of parameters which define the orientation of
the crystallite and the polymer film. The reflexions
in an X-ray photograph of a film or fibre are in general
not spots, but are drawn out into arcs as a result of
the imperfect orientation of the crystallites. We
derive equations connecting the angular spread of
these arcs with the dispersion of orientation.

The equations obtained may be used to calculate
the dispersion of the crystallites from measurements
of the lengths of equatorial arcs, and also to deduce
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& and { values from the reflexions. Comparison of the
measured lengths of the various arcs with the values
calculated from the dispersion gives a useful check on
the self-consistency of the interpretation of the X-ray
diagram, and may enable a decision to be made as to
whether all the reflexions originate from the same
crystalline phase,

Throughout this paper we shall assume that a flat
photographic plate, perpendicular to the primary beam
is used. The results could easily be extended to cylin-
drical or conical films.

2. Specification of orientation

Consider a plane through the ‘fibre axis’ of any
crystallite, perpendicular to the polymer film. The
angle @ between this plane and the direction of orienta-
tion (i.e. of rolling or stretching) is defined as the
‘in plane’ disorientation of the particular crystallite.
The ‘out of plane’ disorientation, 7, is the angle
between the plane of the film, and a plane through the
fibre axis which intersects the film in a straight line
perpendicular to the direction of orientation. In this
way @,y are defined symmetrically, and equations
derived for the diagram obtained with the beam passing
through the edge of the film may be transformed into
relations which hold for the beam normal to the film by
interchanging @ and y (with an appropriate change of
sign). To define the signs of ¢ and y we consider the
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film edge-on to the beam, with the direction of orienta-
tion vertical. We count ¢ and y positive if the upper
half of a crystallite is nearer the X-ray plate, and if
it is to the right of the film looking along the primary
beam.

For some purposes it is convenient to consider the
X.ray diagrams of films which have been rotated about
a vertical axis. The angle between the primary beam
and the plane of the film will be called u, which will
be positive if the rotation appears clockwise from
above. We shall also have occasion to consider re-
flexions from films which are tilted about a horizontal
axis perpendicular to the primary beam. The angle of
tilt will be called », and will be subject to the same sign
convention as ¢.

The position of a spot in the X-ray diagram is
specified (for given 6) by the angle y which the line
joining it to the primary spot makes with the right-
hand side of the equator. In the following pages y will
be calculated as a function of ¢, y for different po-
gitions of the film. Unless otherwise stated, the direc-
tion of orientation will be assumed vertical.

3. Equatorial reflexions
(a) Film edge-on to X-ray beam (u =0, v = 0), and
y=0 ’
Fig. 1 shows the sphere of reflexion in reciprocal
space, centre M, radius unity. The primary beam

Fig. 1. Sphere of reflexion, u = v = 0; equatorial reflexions,

enters the sphere at B and emerges at O, the origin
of the reciprocal lattice. OF is the axis of rotation of

the reciprocal lattice of a crystallite corresponding to
rotation about its fibre axis, and the plane PP'O,
normal to OF, is the zero layer of the lattice. We
consider one lattice point P, which lies in the plane
PP’0O and would therefore give an equatorial reflexion
in a perfectly oriented specimen. If P is in a reflecting
position it must lie on the sphere of reflexion, with
OP = }/d = 2sin §. The locus of P is therefore a
circle PP,P'P;, centre C, formed by intersection of
the sphere with the plane through P normal to MO.
P, P’ are two reflecting positions of a lattice point of

ON THE X-RAY DIFFRACTION PATTERNS OF POLYMER FILMS

a crystallite with an in-plane disorientation @; CN is
normal to PP, and obviously NOC = @.

Since PBO = 6 and BPO = 4, BP = 2 cos 6,
BC=2 cos? § and OC=2 sin2 6; also CP=2sin 0 cos 6.
Now CN = OC tan ¢ = CP sin y, hence 2 sin? § tan ¢
= 2 sin f cos § sin y, or

sin y = tan § tan ¢ . 1

This is the required relation between y and 6, ¢.

(b) General case for film edge-on to beam (u = 0, v = 0)

The problem is to calculate y, or in other words the
positions of P, P'(P,, P;), when the crystallite is given
an out-of-plane disorientation . It is convenient to
take a set of rectangular Cartesian axes with the
incident beam as the negative direction of 0OX, and
with OZ in the direction of stretching. The plane
through BO containing OF will make an angle y with
0Z, consequently the plane through O normal to OF
cuts the plane OYZ in a line which will make an
angle y with 0Y. The points P,, P; lie in this plane.
The equation of the plane PP’0 is obviously z =z tan ¢,
and that of plane P,P;0 is therefore

z=ztan@p—ytanyp. 2)

Now the coordinates of P, are OC, CP cos y, CP sin y
or

- 2sin?6, 2sin 6 cos 6 cos y, 2sin § cos O sin y . (3)
Substitution of these into (2) gives
sin y-+cos y tan y = tan § tan ¢, 4)

from which we obtain
z = sin~! (tan 6 tan @ cos p)—p . (5)

The two values of y found from (5) refer to the re-
flexions on the right and left of the diagram.

(c) Qeneral case when the film has been rotated about a
vertical axis

This case is of possible practical importance be-
cause, as will be shown later, rotation of the specimen
about a vertical axis can shorten the equatorial re-
flexions of specimens with imperfect orientation. It is
most simply considered by allowing the sphere of re-
flexion to rotate through —u about 0Z. We require to
calculate the points of intersection P,, P, of the circle,
centre C, in the new position with the plane (2) The
coordinates of C' will be 2 sin? 6 cos x, 2 sin? 6 sin u, 0
hence those of P, will be given by

3

Y = 2sin® 0 sin u+2 sin 6 cos 6 cos yu cos y,

x=2s1n~()cos,u—2sm000s6s1nycosx,}
(6)
z = 2sin 0 cos O sin y .

Substitution of these into (2) yields the equation
sin y4+ucos y =vtan g, (7
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where
% = tan ¢ sin y+tan g cos u , 8)
v = tan @ cos y—tan p sin u .

The solution of (7) is

v tan O+u(l+u2—o? tan? 6)?
14+u?

sin y = ; 9)
which gives y as a function of @, y, u, . We may
note that if u =0, then u = tany and » = tan g,
and equation (9) reduces to (5). It is obvious that (7)
and (9) have real solutions if, and only if,

1+u2 > v2tan? 0 . (10)

If this does not hold there will be no reflexion from
the set of planes under consideration in this particular
orientation.

4, Discussion and application of results for
equatorial reflexions

The previous results may be useful in practice for at
least two distinct purposes: they may be used to find
the most advantageous position of the specimen for
resolving near equatorial reflexions—this entails cal-
culating the values of u for which the spread of the
arcs is a minimum—and they permit calculation of the
dispersion of the orientation of the crystallites in the
film.

(@) The most advantageous position of the specimen

We consider two cases: @ and y may take all values
between g, and +, respectively, or the fibre axis
may take up all positions within an elliptical cone with
greatest in-plane and out-of-plane disorientations g,
and 1, respectively. We begin by considering the first
case.

Equating to zero (dy/8g),,s, . Obtained by partial
differentiation of (7), gives

cos y = tan 0 cot u , (11)

from which, by substitution into (7), we obtain

cosysiny =sin 6. (12)
Hence for given u, § and , y is 2 monotonic function
of @, since in general p, u, 6 will not satisfy (12);
if they do satisfy (12) in any special case, y is inde-
pendent of ¢. As a consequence of (12) there exists
for given v, 0 a value of y at which the reflexions
arising from all values of ¢ coincide. For p = 0 this
value is u = 6, and the arc corresponding to this value
of 6 contracts to a spot on the equator. Similar con-
siderations apply to y as a function of y for given
> 0, @; x becomes independent of v at a value of

u given by

cos @ cos u = sin 0, (13)
and is determined from
—cos y = tan 6 tan g . (14)
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Equation (14) shows that y is negative in this case
for the right-hand reflexion. A comparison of (11) and
(14) reveals that these equations cannot be satisfied
simultaneously, since 6 # 0; it follows that there is
no value of u at which both dy/op = 0 and dy/oy = 0
are satisfied simultaneously. These considerations
show that the length of the arc in the X-ray diagram
is determined by two of the positions g, £, For
values of p between those given by (12) and (13)
(with @, p replaced by @, ¥,) the extremities of the
arc correspond to gy, —y,, and —@,, ¥, and outside
this range of u to @y, ¥, and —@y, —,. The semi-
angle subtended by the arc may therefore be cal-
culated from (7), (8) or (9) with values of g, y, of
the appropriate sign inserted. These points are
illustrated by Fig. 2, in which y is plotted as a function

Fig. 2. Variation of y with u for 6§ = 30° and values of
(p, w) indicated. Broken line: yxe..

of u for 6 = 30°, and ¢ = 0° or £15°, » = 0° or £5°.
We see for example that if y, = 5° the equatorial
reflexion has a minimum spread (2y = 11°40’) for
u=30°8",

In the case of the elliptical distribution of the
directions of the fibre axes, the extreme positions can
be written as follows:

tanq):tan(pocosn,}

tan p = tan yp, sin 7. (15)

We require to determine the value of # which makes y
a maximum, We consider in detail 4 = 0. Substituting
the values of tan @ and tan g from (15) into (4), and
equating to zero (8x/én),, .0 obtained by partial
differentiation of the resulting equation, we obtain

tan yp, cos y
t = ——",
ann tan g, tan 0 (16)
Using this value of #, we get from (4)
sin? yen, = tan?  tan? @, cos? yy+sinZ p,  (17)

in which yen. is the required semi-angle subtended by
the arc. If 4 =+ 0, a similar argument leads to the

equation
8in? ye, = tan? @, (cos u tan G—sin y cos ye.)?
+tan? y, (sin y tan 0+cos y cos yen)?. (18)
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Fig. 3. Angular spread of equatorial reflexions for values of (g, y,) indicated. Rectangular distribution, u = 0.
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Fig. 4. Angular spread of equatorial reflexions for values of (g, y,) indicated. Elliptical distribution, g = 0.

The extreme values of ya, as p is varied are ob-
tained by equating to zero (dyeu/d)y, .y, s derived
from (18). The resulting equation has two solutions,
which are those of equations (12) and (13) with ¢, v
replaced by ¢, v, and the corresponding values of
xen. are given by (11) and (14). The minimum value
of yen, is given by (11) if @, > y, and by (14) if
@o < Yo For gy = P, yen. is obviously independent
of u.

Values of yen. for @, = 15°, y, = 5° are also plotted
against 4 in Fig. 2 (broken line).

(b) Calculation, of dispersion of crystalites

In principle it is possible to calculate g,, v, from
the values y', " for two equatorial reflexions, ', 6.
For y = 0, we have from (4) (remembering that for
the ‘rectangular’ distribution the extremes of the arc
correspond to @,, —,)

sin (xl_x'l)
% =
1 0 = tan 0" cos 2'—tan 6" cosy’’
’ 3 1 1 o3 ! (19)
tan 6’ sin y"'—tan 6" sin y
tan g, =

tan 6’ cos x''—tan 0" cos g’
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Fig. 6. Angular spread of equatorial reflexions for values of (@, y,) indicated. Elliptical distribution, u = }7.

For the elliptical distribution the corresponding observations with the beam normal to the film, i.e.

equations are with 4 = 47. If y, is sufficiently small it follows from
ant g cos? z" —cos? 5’ (9)d('>rt(}8) ;{h:t %= Por fr:mt hWhj((ih @ is fqupd im-
0= 2 N’ 2 ., Py 2 1 mediately. heturning now to the eage-on POSItleH, we
tan® 0" cos® "' —tan® 6" cos® z (20) see from equation (5) that for small v, and the rect-

tan? v, — tan? §’ sin? »’' —tan? 6"’ sin2 5’ angular distribution
¥0 = fan? 0’ cos? x''—tan2 6" cos? y' Wo = z—sin~1 (tan 0 tan g,) . @1)

In well oriented films y, may be quite small. In For the elliptical distribution we have, with the same
such cases it will be advantageous to determine ¢, by approximation, from (17)
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sin® g, = sin? yey —tan? § tan? @, . (22)

Even for values of y, as large as 15° the error in y
introduced by the use of the approximate equations
(21), (22) is less than 1° for values of g, 6 up to 30°.

Values of. g,, ¢, may also be found from the
equations relating these quantities with y, 6, u by
graphical methods. Figs. 3 and 4 show the spread of
equatorial reflexions as functions of  for a number
of @y, 9 combinations, and u = 0. A circle described
with the origin as centre, and of radius tan 20 cuts
the relevant curve at a point which shows the limit
of the arc. In other words the line joining this point
to the origin makes an angle y with the horizontal.
These graphs if reproduced on transparent paper on a
suitable scale can be superimposed on an X-.ray
diagram, and the values of g, 9, which give the best
fit with the equatorial reflexions read off directly.
Since certain combinations of g, y, may be difficult
to distinguish, it is advantageous to use also a second
X.-ray diagram taken with g = 3. The corresponding
graphs for this case are given in Figs. 5, 6. A glance
at these diagrams shows that combinations of gy, v,
which are not resolved with u = 0, are easily distin-
guished when u = 7 and vice versa.

5. (hkl) reflexions

In general the line joining the reciprocal-lattice point
P to the origin will not be perpendicular to the fibre
axis, but will make an angle 4 with the latter. This
angle may be calculated from the general expression

2

& cos? [S‘}f'2 — hk - J
2 Cos Y| 2 s’ 22ab(cosy cos x cos f3)

=1—2 cos® x+2 cos « cos f cos y , (23)

in which «, §, v, are the angles of the unit cell, and
the fibre axis is assumed to be the ¢ axis. Fig. 7 shows

Fig. 7. Sphere of reflexion, g = v = 0; (kkl) reflexions.

the case for which v = 0 and u = 0; P,, P, are re-
flecting positions of P, and P,N’, NN', P;N' are
perpendiculars from P, N, P; respectively to the
‘fibre axis’ OF. For all positions of P, ON' (= () =
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2 sin § cos 4. Thus the plane P,P;N" is always parallel
to the plane PP’O of Fig. 1; if y = 0 the correspond-
ing plane will be parallel to P,P;0 (Fig. 1) whatever
the values of @,  may be. The distance between the
two planes is always 2 sin 6 cos 4. The plane PP’'O
is given by equation (2), hence the parallel plane
through N’ is

z—x tan @+y tan
(1+tan? @+tan2yp)?

=2sinfcos 4. (24)
In the general case, in which the sphere is rotated
about OZ through —gu, the coordinates of P, (the
reflecting position of P) will be given by (6). Sub-
stitution of these into (24) again gives equation (7),
but with

% = tan ¢ sin y+tan p cos p ,
v = tan ¢ cos y—tan yp sin y
cos 4

+ sin 6

(1+tan® p+tan? ). (25)

Thus y is again given by equation (9), with the above
definitions of », ». We may note that « has the same
value as in (8) but v contains an additional term,
which of course vanishes when A = }#, in which
case the equations reduce to those of §3.

By an argument similar to that leading to equations
(11), (12) we may show that y is not necessarily a
monotonic function of ¢ and . Thus the extremities
of the arc need not correspond to the extreme positions
of the fibre axis; the general equations for the
extent of the arc are unmanageably complicated.

However we can show that for small v, and u=0,
useful expressions for the limits of the arc can still
be obtained, and we shall only consider this case.

In the first place if y, =0

sin y = tan 6 tan g+cos 4/(cos 6 cos @),  (26)

and y determined from this equation has a minimum
for a value of ¢ given by

sin ¢ = —sin ffcos 4 . (27)
Two cases arise, therefore, according to whether g,
is greater or less than |g| determined from (27). If
@, is less than this value, then y is a monotonic func-
tion of @, and the arc extends between y values
corresponding to +@,. In the other case the upper
extremity of the arc (assuming that the latter does
not extend to the meridian) still corresponds to + ¢,
but the lower extremity is determined by the crystal-
lite for which ¢ is given by (27). The corresponding
value of y is cos~! (sin A/cos 6).

For small y, when cos y may be taken as unity,
we have from (7) and (25)

sin (y-+9) = tan 0 tan @+cos 4/(cos 6 cos @) . (28)

It can be shown that the crystallite giving the mini-
mum value of y has a ¢ value still determined by (27)

\
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with an error of the order of y2 The same two cases
will therefore arise as for y, = 0, and it follows from
(28) that the effect of a finite ¥, is to lengthen the
arc by , at each end.

If the indexing of a reflexion is uncertain the above
equations may be used to calculate its { value. Since

{=2sinfcosd, (29)
y may readily be expressed in terms of { from the
appropriate equations given above. Thus { may be
evaluated from measurements of the positions of the
extremities of the arcs. In practice it is of course
desirable that these should be well defined, and the
limitation on the value of i, mentioned above must
be remembered.

We now consider the case in which a reflexion ex-
tends to the meridian. The general condition for this
to occur is, from (7),

vtanf = 1. (30)
For p = 0 and y, = 0, this reduces to
9 =A4-9; (31)

if 4 > 6 the value of ¢ obtained from this equation
gives the minimum value of ¢, which will allow the
arc to touch the meridian. For small y, the corres-
ponding value of ¢, differs from that given in (31)
only by quantities of order 3. In the general case
for the rectangular distribution (and g = 0) it follows
from (25) and (30) that (hkl) reflexions will touch
at the meridian or overlap if

cos A(1+cos? g, tan? yo)t > cos (B+¢,) . (32)

From (10) the condition that there should be a
reflexion from the planes under consideration is

cos A(14cos? g, tan? y,)}

< cos 6 cos @, cos yo+sin O siny, .  (33)

If y, = 0, this equation gives, for the least value of
4 which will give a reflexion for a given g,

A = 6—¢0 . (34)

This is identical with (31) with ¢ = —¢,; hence the
reflexion corresponding to the minimum value of 4 will
be a meridional spot. It is easily shown that this is
also true for yp, # 0.

For the elliptical case the equations corresponding
0 (32) and (33) are identical with the latter with
o = 0, so long as @, > y,.

6. Meridional (00?) reflexions and polar arcs

It is easily shown from the equations of the preceding
section that for planes with 4 =0

tan y = 1/u . (35)
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Thus when y =0 we have the physically obvious
simple relation

x=tn-y. (36)
For positions of the fibre axis between 4@, +1y, the
spread of the meridional reflexion is 2y, ; from equation
(5) we see that the spread of the equatorial reflexion
is 2[y,+sin~! (tan 6 tan @, cos y,)], and is therefore
greater than that of the meridional arc, except for
the trivial cases g, = 0, @ = 0, y, = 37. If y, has been
determined by one of the methods described earlier,
measurement of the spread of a ‘meridional’ reflexion
obviously provides an effective check that the latter
is a genuine meridional reflexion.

If a polar arc has a greater spread than would be
expected from the spread of the equatorial reflexions,
it may not be a true single (00!) reflexion. In this case
resolution into two or more spots may be possible by
tilting the film through an angle » about a horizontal
axis perpendicular to the primary beam. By methods
similar to those employed in § 5 it may be shown that
the resulting value of y corresponding to given ¢, y,
v is still given by equation (7), if, for y = 0, , v are
defined by (37):

% = tan g cos @/cos (p+v),

cosd cosg

sin 6 cos ((p:l-T)

x (1+tan? @ +tan? )t .

v = tan (p+v)+

37)

The corresponding equations for i = }n are obtained
by writing ¢ for y, and —v for ¢ in (37).

We now investigate the conditions which must
hold if a polar arc is to be resolvable by tilting the
specimen in this way. The condition that two arcs
touch at the meridian is given by (30), which after
substitution of v from (37) becomes (for the rect-
angular distribution):

cos? A(1+ cos? @, tan? y,) = cos? (6+@,+7) . (38)

The ares will overlap if the left-hand side of (38) is
greater than the right. Resolution will be possible if
a value of » exists such that

cos? A(1+4cos? @ tan® y) < cos? (§+@+») (39)

for all values of @ between +¢,, and of y between
£y, Consideration of this equation shows that it is
most easily satisfied at » = —0, ie. if the polymer
film is tilted at the Bragg angle, in which case (39)
reduces to

tan? 4 > tan? gy+tan? v, . (40)
A polar arc which is not resolved at this value of »
cannot be resolved at all.

The corresponding condition for the elliptical case
may be derived from (38) and (40) by putting o =10
in these equations, provided @, > v, i.e. a polar arc
can be resolved if A4 > g,.

The preceding equations may be used to calculate
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the largest arc which is not resolvable. An equation
similar to (40), but having an equality sign, applies to
this arc. Two distinct cases arise as in § 5, charac-
terised by the same conditions, and we assume as
before that y, is small. In the first, substitution of A
from the above equality into equation (25) with
u = 0 (which is the same as (37) with » = 0) gives
values of » and », from which, by equation (7), we
obtain for the lower extremity

sin (X“*‘#’d = cos y, tan @, tan §+cos y,/cos 0 . (41)

ON THE X:RAY DIFFRACTION PATTERNS OF POLYMER FILMS

The corresponding equation for the second case is

1 tan? y,+tan2 p, ?
= . (42)
cos @ |1+tan? g,+tan2 ¢,

cos (x+o)

An arc which is longer than would be expected from
(41) or (42) therefore cannot be a single reflexion.

Finally, it is perhaps worth pointing out that the
equations relevant to specimens with fibre orientation
may be deduced from the equations given in this paper
for the elliptical distribution, with @, = .
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In an early X-ray investigation of guanidinium iodide
by Theilacker (1935) an improbably small value, 1:18 A,
was reported for the C-N distance in the guanidinium ion.
Raman spectra indicate a distance of 1-33 A (Kellner,
1941).

In order to obtain other X-ray evidence on the structure
of the guanidinium ion we attempted to find a guanidinium
salt which would allow a simple X-ray determination of
its structure by heavy-atom techniques and Fourier
syntheses of projections. From among several salts the
bromate was selected for further investigation bocause
of its flat unit cell.

Guanidinium bromate,
monoclinic with

a =377 b=23346, c = 911 &; g =99°.

The density is 2:16 g.cm.3, requiring 8 molecules per
unit cell. It forms twins with common a and b axes, but
different ¢ axes. Since reflexions ikl were observed only
for h+k = 2n, it was assumed that the C face (001) is
centred. A Patterson synthesis of the [100] projection
excluded the presence of m or 2, leaving Cc as the only
possible monoclinic space-group. The presence of the weak
reflexions 001 and 005, however, is in contradiction with
this space group. This means that the crystals are not
actually monoclinie but triclinic. This again is in contra-
diction with the equality F%;; = Fjj, which was ob-
served without any exception on the zero-, first- and
second-layer-line Weissenberg photographs about the
a axis. The discrepancy can be explained either by
assuming that the deviation from monoclinic symmetry
is too small to cause an appreciable difference between
F%, and F3 or by a second twinning, such that each
reflexion hkl of one of the twins coincides with kkl of the
other.

C(NH,);BrO;, seems to be

Tentatively rejecting the second possibility, the position
of the bromine atoms could be easily found from the [100]
Patterson projection and a generalized Patterson projec-
tion (Cochran & Dyer, 1952) based on the 1kl reflexions.
The configuration of these atoms was in agreement with
the space group Cc; in addition to this it showed centres
of symmetry in the [100] projection. By application of
the vector convergence method (Beevers & Robertson,
1950), a triangular guanidinium ion and the three oxygen
atoms of the BrQj-ion appeared in the [100] projection.
As a first approximation it was then assumed that the
whole structure belongs to the space group Cc and that its
[100] projection is centrosymmetrical. A Fourier refine-
ment of the atomic coordinates led to a reliability factor
Z|\Fol =|F]|+ Z|F,| of 0-16 for the 0kl structure factors.
Assuming a flat trigonal guanidinium ion, a C-N distance
of 1-34¢ A could be deduced with reasonable certainty
from the final Fourier synthesis (estimated probable
error 0-04 A).

Attempts to account for the observed reflexions 001
and 005, such that for no k%l the deviation from the
equality F3; = F3p would exceed the experimental
errors, were not successful. It was concluded that a small
deviation from monoclinic symmetry exists, which is
masked by an approximately 50-509%, twinning. Since
we were not successful in obtaining single crystals, a

further refinement of the atomic coordinates had to be
abandoned.
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